Acta Cryst. (1991). C47, 1264-1266

Structure of Bis(*p*-methoxyphenyltelluro)methane

BY M. DE MATHEUS AND L. TORRES

Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia

J. F. PINIELLA*

Area de Cristalografía, Universidad Autónoma de Barcelona, 08193 Bellatera, Spain

AND C. MIRAVITLLES

Instituto de Ciencia de Materiales, c/Martí i Franquès, s/n 08028 Barcelona, Spain

(Received 12 July 1990; accepted 8 October 1990)

Abstract. $C_{15}H_{16}O_2Te_2$, $M_r = 483\cdot2$, orthorhombic, *Pbca*, a = 6.374 (2), $b = 17\cdot069$ (2), $c = 28\cdot538$ (3) Å, V = 3105 (1) Å³, Z = 8, $D_x = 2\cdot07$ Mg m⁻³, Mo K α , $\lambda = 0\cdot71069$ Å, $\mu = 3\cdot763$ mm⁻¹, F(000) = 1808, T = 293 K, $R = 0\cdot046$, $wR = 0\cdot052$ for 1722 observed reflections. Each Te atom in the binuclear molecule is bonded to two different organo groups with Te— C(aliph) 2·149 (6) and 2·131 (6) Å; Te—C(arom) 2·115 (6) and 2·105 (7) Å; C—Te—C 95·2 (2), 97·8 (2)°; Te—Te distance 3·6632 (9) Å. The Te atoms exhibit different surroundings: square-planar geometry for Te1 and T-shaped for Te3.

Introduction. The importance of selenoacetals and selenium-tellurium acetals in the field of organic synthesis has been pointed out (Seebach & Beck, 1975; Krief, 1980; Kauffmann, 1982; Brandt, Comasseto, Nakamura & Petragnani, 1983). We are interested in another group of compounds closely related to these, the bis(aryltelluro)methanes, (ArTe)₂CH₂, also very important reagents in organic synthesis and as starting materials for the preparation of other kinds of organotellurium compounds (Otsubo, Ogura, Yamaguchi, Higuchi, Sakato & Misumi, 1981; Chikamatsu, Otsubo, Ogura & Yamaguchi, 1982; Kauffmann, 1982). The insertion reaction of carbene into the Te-Te bond of diarylditellurides described by Petragnani & Schill (1970) was utilized to prepare a series of bis(aryltelluro)methanes (Torres, 1990). The present work deals with the structural aspects of these intermediates. As far as we know this is the first structural report on the Te-CH₂-Te substructure. This study has been carried out in order to establish the precise geometry of the molecule within the tellurium surroundings.

Experimental. Crystal chosen for X-ray study with dimensions $0.45 \times 0.18 \times 0.18$ mm, Enraf-Nonius

0108-2701/91/061264-03\$03.00

CAD-4 diffractometer. Unit-cell parameters by least squares from 25 reflections with θ between 6 and 13°; 2277 reflections collected, 1722 considered observed with $I \ge 2.5\sigma(I)$; $\omega - 2\theta$ scan mode, *hkl* range $0 \le h \le 7$, $0 \le k \le 19, 0 \le l \le 31; 2\theta$ limit 47°. Three standard reflections monitored every 50 measurements showed no significant change in intensity. Lorentz and polarization corrections were applied, but no absorption correction was performed. The structure was solved by direct methods using MULTAN11/84 (Main, Germain & Woolfson, 1984). Anisotropic full-matrix least-squares refinement of non-H atoms with SHELX76 (Sheldrick, 1976); H-atom positions were calculated riding on the adjacent C atom assuming C-H = 0.96 Å and two different isotropic temperature factors were refined, one for methyl and one for non-methyl H atoms (final values U = 0.1164and 0.0531 Å², respectively); 174 parameters refined; wR = 0.052, $w = 0.2732/[\sigma^2(F) +$ R = 0.046. 0.01011F²]; S = 1.55; max. (Δ/σ) = 0.091. Scattering factors, except tellurium, from International Tables for X-ray Crystallography (1974, Vol. IV); scattering factor for tellurium from Forsyth & Wells (1959). Residual electron density within -0.76 and $0.52 \text{ e} \text{ Å}^{-3}$ near the Te atoms. Drawing by *PLUTO* (Motherwell & Clegg, 1978). All calculations were performed on a Digital MicroVAX II.

Discussion. The atomic parameters are given in Table 1.[†] A view of the molecule with the atomic numbering scheme is shown in Fig. 1 and the packing diagram in Fig. 2. Table 2 gives bond distances and angles.

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.

[†] Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, torsion angles and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53626 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Atomic coordinates ($\times 10^4$; Te $\times 10^5$) with e.s.d.'s in parentheses and equivalent isotropic temperature factors (Å²) for non-H atoms

	$\mathbf{D}_{eq} = (0 \mathbf{i} \mathbf{j} 2 \mathbf{j} 2 2 \mathbf{j} \mathbf{j} 2 \mathbf{j} 2 \mathbf{j} 2 \mathbf{j} 2 \mathbf$			
	x	у	z	B_{eq}
Tel	71663 (8)	11946 (3)	55717 (2)	3.76
Te3	71339 (9)	10170 (3)	68509 (2)	4.52
C2	5421 (11)	1047 (3)	6210 (2)	4.01
C11	8497 (10)	59 (3)	5580 (2)	3.15
C12	10425 (10)	- 82 (4)	5769 (2)	4.18
C13	11313 (10)	-819 (4)	5766 (2)	4.20
C14	10273 (10)	- 1437 (4)	5575 (2)	3.61
C15	8271 (9)	- 1295 (4)	5384 (2)	3.80
C16	7394 (9)	- 558 (4)	5382 (2)	3.59
01	10956 (7)	- 2189 (3)	5550 (1)	4.69
C17	13007 (10)	- 2347 (6)	5703 (3)	5.39
C31	8417 (10)	2152 (4)	6815 (2)	3.45
C32	7367 (10)	2788 (4)	6620 (3)	4.47
C33	8243 (10)	3525 (4)	6620 (2)	3.92
C34	10091 (10)	3662 (4)	6835 (2)	3.53
C35	11181 (11)	3036 (4)	7042 (2)	4.35
C36	10298 (11)	2292 (4)	7021 (2)	4.38
03	10822 (7)	4407 (3)	6829 (1)	4.52
C37	12709 (11)	4595 (5)	7056 (3)	5.36

$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$

Table 2. Interatomic distances (Å) and angles (°) withe.s.d.'s in parentheses

Te1—C2 Te1—C11 Te3—C2 Te3—C31	2·149 (6) 2·115 (6) 2·131 (6) 2·105 (6)	C11—Te1—C2 C31—Te3—C2 Te3—C2—Te1	95·2 (2) 97·8 (2) 117·7 (3)
Te1O1' Te3O3'	3·402 (5) 3·332 (5)	C11—Te1…O1' C31—Te3…O3'	167·8 (2) 167·8 (2)
C12—C11 C16—C11 C13—C12 C14—C13 C15—C14 O1—C14 C16—C15 C17—O1	1-364 (9) 1-387 (8) 1-379 (9) 1-361 (9) 1-361 (9) 1-357 (8) 1-376 (9) 1-405 (8)	C12—C11—Te1 C16—C11—C12 C13—C12—C11 C14—C13—C12 C15—C14—C13 O1—C14—C13 O1—C14—C15 C16—C15—C14 C15—C16—C11 C17—O1—C14	121-9 (5) 118-9 (6) 121-9 (6) 120-7 (6) 117-6 (6) 126-8 (6) 115-7 (5) 121-8 (5) 119-2 (5) 117-6 (6)
C32—C31 C36—C31 C33—C32 C34—C33 C35—C34 O3—C34 C36—C35 C37—O3	1 392 (9) 1 356 (9) 1 376 (9) 1 348 (8) 1 405 (8) 1 355 (7) 1 389 (9) 1 404 (8)	$\begin{array}{c} C32-C31-Te3\\ C36-C31-C32\\ C33-C32-C31\\ C34-C33-C32\\ C35-C34-C33\\ O3-C34-C33\\ O3-C34-C33\\ O3-C34-C35\\ C36-C35-C34\\ C35-C36-C31\\ C37-O3-C34\\ \end{array}$	123·4 (5) 117·5 (5) 121·2 (6) 120·9 (6) 119·4 (6) 117·3 (5) 123·3 (6) 118·4 (6) 122·5 (6) 120·2 (5)

Symmetry code: for O1': 1.5 - x, 0.5 + y, *z*; for O3': 1.5 - x, -0.5 + y, *z*.

The distances found for Te—C(aliph) [Te1—C2 = $2 \cdot 149$ (6); Te3—C2 = $2 \cdot 131$ (6) Å] and for Te— C(arom) [Te1—C11 = $2 \cdot 115$ (6); Te3—C31 = $2 \cdot 105$ (7) Å] are within the range reported for these kinds of bonds: Te—C(aliph)_{aver} = $2 \cdot 14$ and Te— C(arom) = $2 \cdot 11 - 2 \cdot 12$ Å (Alcock & Harrison, 1982); the C—Te—C angles also lie within the expected values, C11—Te1—C2 = $95 \cdot 2$ (2) and C31—Te3— C2 = $97 \cdot 8$ (2)°. C2 maintains its original sp^3 hybridization even though slightly distorted, Te1—C2—Te3 = $117.7 (3)^{\circ}$. From these data, the distance Te1-Te3 is 3.6632 (9) Å [shorter than the sum of the van der Waals radii, 4.12 Å, (Bondi, 1964)].

The geometry around the tellurium is T-shaped, the third position being occupied by an O atom in a *trans* position to the aromatic C atom. These O atoms belong to neighbouring molecules (Table 2). Cl4' (symmetry code 2 - x, -y, 1 - x) is placed *trans* to C2 at 3.680 (6) Å from Te1, slightly shorter than the sum of the van der Waals radii; this atom lies on the plane defined by the Te1, C2, Cl1 and Ol' [r.m.s.d. = 0.1019; $\delta_{Cl4'} = 0.138$ (6) Å]. This interaction is not observed for the Te3 atom indicating that the Te atoms have different surroundings; in agreement with this, different torsion angles are

Fig. 1. A view of the molecule showing the atomic numbering.

Fig. 2. Projection of the unit-cell contents down the a axis.

observed [C2-Te1-C11-C12 = -94.3 (5), C2-Te1-C11-C16 = 86.7 (5), C2-Te3-C31-C32 = 34.3 (6) and C2-Te3-C31-C36 = -150.6 (5)°].Also bond lengths found for Te3 are shorter than for Te1. Taking into account the ligand distribution and following the ideas of Husebye (1983), we presume that the Te1 lone non-bonding pairs occupy octahedral positions above and below the coordination plane whereas the Te3 lone pairs occupy equatorial positions together with C2 in a trigonal bipyramidal arrangement.

Financial support from the European Economic Community (MdM, Research Fellowship) is gratefully acknowledged. MdM is especially grateful to Instituto de Ciencia de Materiales de Barcelona (CSIC) where this work was developed.

References

ALCOCK, N. W. & HARRISON, W. D. (1982). J. Chem. Soc. Dalton Trans. pp. 251-255. BONDI, A. (1964). J. Phys. Chem. 68, 441-451.

- BRANDT, C. A., COMASSETO, J. V., NAKAMURA, W. & PETRAGNANI, N. (1983). J. Chem. Res. pp. 156–157.
- CHIKAMATSU, K., OTSUBO, T., OGURA, F. & YAMAGUCHI, H. (1982). Chem. Lett. pp. 1081–1084.

FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412-415.

HUSEBYE, S. (1983). Proceedings of the Fourth International Conference on the Organic Chemistry of Selenium and Tellurium, edited by F. J. BERRY & W. R. MCWHINNIE, p. 362. Univ. of Aston, Birmingham, England.

KAUFFMANN, T. (1982). Angew. Chem. Int. Ed. Engl. 21, 410–429. KRIEF, A. (1980). Tetrahedron, 36, 2531–2640.

- MAIN, P., GERMAIN, G. & WOOLFSON, M. M. (1984). MULTAN11/84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- OTSUBO, T., OGURA, F., YAMAGUCHI, H., HIGUCHI, H., SAKATO, Y. & MISUMI, S. (1981). *Chem. Lett.* pp. 447–448.
- PETRAGNANI, N. & SCHILL, G. (1970). Chem. Ber. pp. 2271–2273.
- SEEBACH, D. & BECK, A. K. (1975). Chem. Ber. 103, 314-321.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- TORRES, L. (1990). J. Organomet. Chem. 181, 69-78.

Acta Cryst. (1991). C47, 1266-1269

Structures of N-Substituted 1,2-Oxazines. II. Bicyclic Bridged Derivatives

BY B. TINANT AND J.-P. DECLERCQ

Laboratoire de chimie physique et de cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 1 May 1990; accepted 18 October 1990)

Abstract. (I) 2-(2-Oxa-3-azabicyclo[2.2.2]oct-5-en-3yl)-1,1-ethylenedicarbonitrile, $C_{10}H_9N_3O_7$ $M_r =$ 187.20, orthorhombic, *Pnam*, a = 8.933(1), b =13.088 (1), c = 8.002 (2) Å, V = 935.6 (3) Å³, Z = 4, $D_x = 1.33 \text{ g cm}^{-3}$, $\lambda(\mathrm{Cu} \ K\alpha) = 1.5418 \ \mathrm{\AA},$ $\mu =$ 7.5 cm^{-1} , F(000) = 392, T = 291 K, R = 0.056 for642 observed reflections. (II) 2-(tert-Butylthio)-3-(2-oxa-3-azabicyclo[2.2.2]octan-3-yl)acrylonitrile, $M_r = 252.38$, monoclinic, $P2_{1},$ $C_{13}H_{20}N_2OS$, b = 17.770(5),c = 10.926 (5) Å,a = 12.098 (4), $\beta = 112.44$ (3)°, V = 2171 (1) Å³, Z = 6, $D_x = 1.16 \text{ g cm}^{-3}$, λ (Mo K α) = 0.71069 Å, $\mu = 2.1 \text{ cm}^{-3}$ $\beta = 112.44(3)^{\circ}$ $D_r =$ F(000) = 816, T = 291 K, R = 0.064 for 3441 observed reflections. (III) 2-(tert-Butylthio)-3-(6-oxa-7-azabicyclo[3.2.2]non-8-en-7-yl)acrylonitrile. $C_{14}H_{20}N_2OS$, $M_r = 264.39$, orthorhombic, $P2_12_12_1$, a = 9.962 (3), b = 12.576 (3), c = 11.766 (4) Å, V =1474.1 (7) Å³, Z = 4, $D_x = 1.19$ g cm⁻³, λ (Mo K α) = 0.71069 Å, $\mu = 2.10$ cm⁻¹, F(000) = 568, T = 291 K, R = 0.051 for 1259 observed reflections. The E configuration of the double bond is observed for both (II) and (III). Some geometrical parameters indicate clearly that the conjugation between the olefin and the ring system is less in molecule (III) than in the other two derivatives.

Introduction. A series of *N*-substituted bicyclic 1,2oxazines has been synthetized and their thermal isomerization in epoxy-epimines has been studied (Vaerman, 1989).

n = 0 to 3; R = CN or S'Bu; * single bond in (II)

With the aim of quantifying the effects of the bridge length (n) and that of the substituent (R) of the olefin on the geometry, we have determined the

© 1991 International Union of Crystallography