Structure of $\operatorname{Bis}(p$-methoxyphenyltelluro)methane

By M. de Matheus and L. Torres
Departamento de Quimica, Universidad Nacional de Colombia, Bogotá, Colombia

J. F. Piniella*
Area de Cristalografia, Universidad Autónoma de Barcelona, 08193 Bellatera, Spain
and C. Miravitlles
Instituto de Ciencia de Materiales, c/Martí i Franquès, s/n 08028 Barcelona, Spain

(Received 12 July 1990; accepted 8 October 1990)

Abstract

C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Te}_{2}, M_{r}=483 \cdot 2\), orthorhombic, Pbca, $a=6.374$ (2), $b=17.069$ (2), $c=28.538$ (3) \AA, $V=3105$ (1) $\AA^{3}, Z=8, D_{x}=2.07 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$, $\lambda=0.71069 \AA, \mu=3.763 \mathrm{~mm}^{-1}, F(000)=1808, T=$ $293 \mathrm{~K}, R=0.046, w R=0.052$ for 1722 observed reflections. Each Te atom in the binuclear molecule is bonded to two different organo groups with Te C(aliph) $2 \cdot 149$ (6) and 2.131 (6) \AA; $\mathrm{Te}-\mathrm{C}$ (arom) 2.115 (6) and 2.105 (7) \AA; C-Te-C 95.2 (2), 97.8 (2) ${ }^{\circ}$; $\mathrm{Te}-\mathrm{Te}$ distance 3.6632 (9) \AA. The Te atoms exhibit different surroundings: square-planar geometry for Tel and T -shaped for Te 3 .

Introduction. The importance of selenoacetals and selenium-tellurium acetals in the field of organic synthesis has been pointed out (Seebach \& Beck, 1975; Krief, 1980; Kauffmann, 1982; Brandt, Comasseto, Nakamura \& Petragnani, 1983). We are interested in another group of compounds closely related to these, the bis(aryltelluro)methanes, $(\mathrm{ArTe})_{2} \mathrm{CH}_{2}$, also very important reagents in organic synthesis and as starting materials for the preparation of other kinds of organotellurium compounds (Otsubo, Ogura, Yamaguchi, Higuchi, Sakato \& Misumi, 1981; Chikamatsu, Otsubo, Ogura \& Yamaguchi, 1982; Kauffmann, 1982). The insertion reaction of carbene into the $\mathrm{Te}-\mathrm{Te}$ bond of diarylditellurides described by Petragnani \& Schill (1970) was utilized to prepare a series of bis(aryltelluro)methanes (Torres, 1990). The present work deals with the structural aspects of these intermediates. As far as we know this is the first structural report on the $\mathrm{Te}-\mathrm{CH}_{2}-\mathrm{Te}$ substructure. This study has been carried out in order to establish the precise geometry of the molecule within the tellurium surroundings.

Experimental. Crystal chosen for X-ray study with dimensions $0.45 \times 0.18 \times 0.18 \mathrm{~mm}$, Enraf-Nonius

[^0]CAD-4 diffractometer. Unit-cell parameters by least squares from 25 reflections with θ between 6 and 13°; 2277 reflections collected, 1722 considered observed with $I \geq 2 \cdot 5 \sigma(I) ; \omega-2 \theta$ scan mode, $h k l$ range $0 \leq h \leq 7$, $0 \leq k \leq 19,0 \leq l \leq 31 ; 2 \theta$ limit 47°. Three standard reflections monitored every 50 measurements showed no significant change in intensity. Lorentz and polarization corrections were applied, but no absorption correction was performed. The structure was solved by direct methods using MULTAN11/84 (Main, Germain \& Woolfson, 1984). Anisotropic full-matrix least-squares refinement of non- H atoms with SHELX76 (Sheldrick, 1976); H-atom positions were calculated riding on the adjacent C atom assuming $\mathrm{C}-\mathrm{H}=0.96 \AA$ and two different isotropic temperature factors were refined, one for methyl and one for non-methyl H atoms (final values $U=0.1164$ and $0.0531 \AA^{2}$, respectively); 174 parameters refined; $R=0.046, \quad w R=0.052, \quad w=0.2732 /\left[\sigma^{2}(F)+\right.$ $0.01011 F^{2}$]; $S=1.55$; max. $(\Delta / \sigma)=0.091$. Scattering factors, except tellurium, from International Tables for X-ray Crystallography (1974, Vol. IV); scattering factor for tellurium from Forsyth \& Wells (1959). Residual electron density within -0.76 and $0.52 \mathrm{e} \AA^{-3}$ near the Te atoms. Drawing by PLUTO (Motherwell \& Clegg, 1978). All calculations were performed on a Digital MicroVAX II.

Discussion. The atomic parameters are given in Table $1 . \dagger$ A view of the molecule with the atomic numbering scheme is shown in Fig. 1 and the packing diagram in Fig. 2. Table 2 gives bond distances and angles.
\dagger Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, torsion angles and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53626 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
© 1991 International Union of Crystallography

Table 1. Atomic coordinates $\left(\times 10^{4} ; \mathrm{Te} \times 10^{5}\right)$ with e.s.d.'s in parentheses and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ for non- H atoms

$$
B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	x	y	z	$B_{\text {eq }}$
Te1	$71663(8)$	$11946(3)$	$55717(2)$	$3 \cdot 76$
Te3	$71339(9)$	$10170(3)$	$68509(2)$	$4 \cdot 52$
C2	$5421(11)$	$1047(3)$	$6210(2)$	$4 \cdot 01$
C11	$8497(10)$	$59(3)$	$5580(2)$	$3 \cdot 15$
C12	$10425(10)$	$-82(4)$	$5769(2)$	$4 \cdot 18$
C13	$11313(10)$	$-819(4)$	$5766(2)$	$4 \cdot 20$
C14	$10273(10)$	$-1437(4)$	$5575(2)$	$3 \cdot 61$
C15	$8271(9)$	$-1295(4)$	$5384(2)$	$3 \cdot 80$
C16	$7394(9)$	$-558(4)$	$5382(2)$	$3 \cdot 59$
O1	$10956(7)$	$-2189(3)$	$5550(1)$	$4 \cdot 69$
C17	$13007(10)$	$-2347(6)$	$5703(3)$	$5 \cdot 39$
C31	$8417(10)$	$2152(4)$	$6815(2)$	$3 \cdot 45$
C32	$7367(10)$	$2788(4)$	$6620(3)$	$4 \cdot 47$
C33	$8243(10)$	$3525(4)$	$6620(2)$	$3 \cdot 92$
C34	$10091(10)$	$3662(4)$	$6835(2)$	$3 \cdot 53$
C35	$11181(11)$	$3036(4)$	$7042(2)$	$4 \cdot 35$
C36	$10298(11)$	$2292(4)$	$7021(2)$	$4 \cdot 58$
O3	$10822(7)$	$4407(3)$	$6829(1)$	$4 \cdot 52$
C37	$12709(11)$	$4595(5)$	$7056(3)$	$5 \cdot 36$

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Tel-C2	$2 \cdot 149$ (6)	C11-Tel-C2	$95 \cdot 2$ (2)
Tel-Cll	2.115 (6)	C31-Te3-C2	97.8 (2)
Te3--C2	$2 \cdot 131$ (6)	Te3-C2-Tel	$117 \cdot 7$ (3)
Te3-C31	$2 \cdot 105$ (6)		
Tel $\cdots \mathrm{Ol}^{\prime}$	3.402 (5)	Cll-Tel ${ }^{\text {a }}{ }^{\prime}{ }^{\prime}$	$167 \cdot 8$ (2)
Te3 $\cdots{ }^{\prime}$	$3 \cdot 332$ (5)	C31-Te3 ${ }^{\text {O }}{ }^{\prime}$	$167 \cdot 8(2)$
C12-Cl1	1.364 (9)	C12-C11-Tel	121.9 (5)
C16-C11	1.387 (8)	$\mathrm{C} 16-\mathrm{Cl1}-\mathrm{C} 12$	118.9 (6)
C13-C12	1.379 (9)	$\mathrm{C13-C12-C11}$	121.9 (6)
C14-C13	1.361 (9)	C14-Cl3-C12	120.7 (6)
C15-C14	1.409 (9)	C15-C14-C13	117.6 (6)
$\mathrm{Ol}-\mathrm{Cl} 4$	1.357 (8)	$\mathrm{Ol}-\mathrm{Cl} 4-\mathrm{Cl} 3$	126.8 (6)
C16-C15	1.376 (9)	$\mathrm{Ol}-\mathrm{Cl} 4-\mathrm{Cl} 5$	$115 \cdot 7$ (5)
$\mathrm{Cl} 7-\mathrm{Ol}$	1.405 (8)	C16-C15-C14	121.8 (5)
		C15-C16-C11	119.2 (5)
		$\mathrm{Cl} 7-\mathrm{Ol}-\mathrm{Cl} 4$	117.6 (6)
C32-C31	1.392 (9)	C32-C31-Te3	123.4 (5)
C36-C31	1.356 (9)	C36-C31-C32	117.5 (5)
C33-C32	1.376 (9)	C33-C32-C31	121.2 (6)
C34-C33	$1 \cdot 348$ (8)	C34-C33-C32	$120 \cdot 9$ (6)
C35-C34	1.405 (8)	C35-C34-C33	119.4 (6)
O3-C34	$1 \cdot 355$ (7)	O3-C34-C33	117.3 (5)
C36-C35	1.389 (9)	O3-C34-C35	123.3 (6)
C37-03	1.404 (8)	C36-C35-C34	118.4 (6)
		C35-C36-C31	122.5 (6)
		C37-O3-C34	$120 \cdot 2$ (5)

Symmetry code: for $\mathrm{Ol}^{\prime}: 1 \cdot 5-x, 0 \cdot 5+y, z$; for $\mathrm{O3}^{\prime}: 1 \cdot 5-x,-0 \cdot 5$ $+y, z$.

The distances found for $\mathrm{Te}-\mathrm{C}($ aliph $)[\mathrm{Te} 1-\mathrm{C} 2=$ 2.149 (6); $\mathrm{Te} 3-\mathrm{C} 2=2.131$ (6) \AA] and for $\mathrm{Te}-$ C(arom) $\quad[\mathrm{Tel}-\mathrm{C} 11=2 \cdot 115(6) ; \quad \mathrm{Te} 3-\mathrm{C} 31=$ $2 \cdot 105$ (7) \AA] are within the range reported for these kinds of bonds: $\mathrm{Te}-\mathrm{C}$ (aliph $)_{\text {aver }}=2.14$ and $\mathrm{Te}-$ $\mathrm{C}($ arom $)=2 \cdot 11-2 \cdot 12 \AA$ (Alcock \& Harrison, 1982); the $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ angles also lie within the expected values, $\mathrm{C} 11-\mathrm{Te}-\mathrm{C} 2=95.2$ (2) and $\mathrm{C} 31-\mathrm{Te} 3-$ $\mathrm{C} 2=97.8(2)^{\circ} . \mathrm{C} 2$ maintains its original $s p^{3}$ hybridization even though slightly distorted, $\mathrm{Te} 1-\mathrm{C} 2-\mathrm{Te} 3$
$=117.7(3)^{\circ}$. From these data, the distance Tel-Te3 is 3.6632 (9) \AA [shorter than the sum of the van der Waals radii, $4 \cdot 12 \AA$, (Bondi, 1964)].
The geometry around the tellurium is T -shaped, the third position being occupied by an O atom in a trans position to the aromatic C atom. These O atoms belong to neighbouring molecules (Table 2). C14' (symmetry code $2-x,-y, 1-x$) is placed trans to C 2 at 3.680 (6) \AA from Te1, slightly shorter than the sum of the van der Waals radii; this atom lies on the plane defined by the $\mathrm{Te}, \mathrm{C} 2, \mathrm{C} 11$ and Ol^{\prime} [r.m.s.d. $=0.1019 ; \delta_{\mathrm{Cl}^{\prime}}=0.138$ (6) \AA]. This interaction is not observed for the Te 3 atom indicating that the Te atoms have different surroundings; in agreement with this, different torsion angles are

Fig. 1. A view of the molecule showing the atomic numbering.

Fig. 2. Projection of the unit-cell contents down the a axis.
observed [C2-Tel- $\mathrm{Cl} 1-\mathrm{C} 12=-94.3(5), \mathrm{C} 2-$ $\mathrm{Tel}-\mathrm{Cl1}-\mathrm{C} 16=86 \cdot 7(5), \mathrm{C} 2-\mathrm{Te} 3-\mathrm{C} 31-\mathrm{C} 32=$ $34 \cdot 3$ (6) and $\left.\mathrm{C} 2-\mathrm{Te} 3-\mathrm{C} 31-\mathrm{C} 36=-150 \cdot 6(5)^{\circ}\right]$. Also bond lengths found for Te 3 are shorter than for Tel. Taking into account the ligand distribution and following the ideas of Husebye (1983), we presume that the Tel lone non-bonding pairs occupy octahedral positions above and below the coordination plane whereas the Te 3 lone pairs occupy equatorial positions together with C 2 in a trigonal bipyramidal arrangement.

Financial support from the European Economic Community (MdM, Research Fellowship) is gratefully acknowledged. MdM is especially grateful to Instituto de Ciencia de Materiales de Barcelona (CSIC) where this work was developed.

References

Alcock, N. W. \& Harrison, W. D. (1982). J. Chem. Soc. Dalton Trans. pp. 251-255.

Bondl, A. (1964). J. Phys. Chem. 68, 441-451.
Brandt, C. A., Comasseto, J. V., Nakamura, W. \& Petragnan, N. (1983). J. Chem. Res. pp. 156-157.

Chikamatsu, K., Otsubo, T., Ogura, F. \& Yamaguch, H. (1982). Chem. Lett. pp. 1081-1084.

Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412-415.
Husebye, S. (1983). Proceedings of the Fourth International Conference on the Organic Chemistry of Selenium and Tellurium, edited by F. J. Berry \& W. R. McWhinnie, p. 362. Univ. of Aston, Birmingham, England.
Kauffmann, T. (1982). Angew. Chem. Int. Ed. Engl. 21, 410-429.
Krief, A. (1980). Tetrahedron, 36, 2531-2640.
Main, P., Germain, G. \& Woolfoon, M. M. (1984). mULTANII/84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Otsubo, T., Ogura, f., Yamaguchi, H., Higuch, H., Sakato, Y. \& Misumi, S. (1981). Chem. Lett. pp. 447-448.

Petragnani, N. \& Schill, G. (1970). Chem. Ber. pp. 2271-2273.
Seebach, D. \& Beck, A. K. (1975). Chem. Ber. 103, 314-321.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Torres, L. (1990). J. Organomet. Chem. 181, 69-78.

Acta Cryst. (1991). C47, 1266-1269

Structures of \boldsymbol{N}-Substituted 1,2-Oxazines. II. Bicyclic Bridged Derivatives

By B. Tinant and J.-P. Declerce
Laboratoire de chimie physique et de cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 1 May 1990; accepted 18 October 1990)

Abstract

I) 2-(2-Oxa-3-azabicyclo[2.2.2]oct-5-en-3-yl)-1,1-ethylenedicarbonitrile, $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}, \quad M_{r}=$ 187.20, orthorhombic, Pnam, $a=8.933$ (1), $b=$ $13.088(1), c=8.002$ (2) $\AA, V=935.6$ (3) $\AA^{3}, Z=4$, $D_{x}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \quad \mu=$ $7.5 \mathrm{~cm}^{-1}, \quad F(000)=392, T=291 \mathrm{~K}, \quad R=0.056$ for 642 observed reflections. (II) 2-(tert-Butylthio)-3-(2-oxa-3-azabicyclo[2.2.2]octan-3-yl)acrylonitrile, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}, \quad M_{r}=252.38$, monoclinic, $P 2_{1}$, $a=12.098$ (4),$\quad b=17.770$ (5),$\quad c=10.926$ (5) A \AA, $\beta=112 \cdot 44(3)^{\circ}, \quad V=2171(1) \AA^{3}, \quad Z=6, \quad D_{x}=$ $1.16 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=2.1 \mathrm{~cm}^{-1}$, $F(000)=816, \quad T=291 \mathrm{~K}, \quad R=0.064$ for 3441 observed reflections. (III) 2-(tert-Butylthio)-3-(6-oxa-7-azabicyclo[3.2.2]non-8-en-7-yl)acrylonitrile, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}, M_{r}=264 \cdot 39$, orthorhombic, $P 2_{1} 2_{1} 2_{1}$, $a=9.962$ (3),$\quad b=12.576$ (3),$c=11.766$ (4) $\AA, \quad V=$ 1474.1 (7) $\AA^{3}, Z=4, D_{x}=1 \cdot 19 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=2.10 \mathrm{~cm}^{-1}, F(000)=568, T=291 \mathrm{~K}$, $R=0.051$ for 1259 observed reflections. The E configuration of the double bond is observed for both

(II) and (III). Some geometrical parameters indicate clearly that the conjugation between the olefin and the ring system is less in molecule (III) than in the other two derivatives.

Introduction. A series of N-substituted bicyclic 1,2oxazines has been synthetized and their thermal isomerization in epoxy-epimines has been studied (Vaerman, 1989).

With the aim of quantifying the effects of the bridge length (n) and that of the substituent (R) of the olefin on the geometry, we have determined the

0108-2701/91/061266-04\$03.00

[^1]
[^0]: * To whom correspondence should be addressed.

[^1]: (C) 1991 International Union of Crystallography

